THE CONFORMATIONAL EQUILIBRIUM OF THE AMINO GROUP

E. L. Eliel, E. W. Della and'T. H. Williams Department of Chemistry, University of Notre Dame, Notre Dame, Indiana

(Received LO February 1963)

AMONG the numerous conformational equilibrium values reported in the literature^{1,2} that of the amino group is conspicuously missing. Tichy, **Jonas and Sicher^s some years ago determined pK data which indicate**
a qualitatively that the $-\Delta G$ value for the equilibrium

is comparable in magnitude with that for methyl (1.7 kcal./mole4) and these indications are now quantitatively supported as shown in the accompanying letter. ⁵

In our laboratory, we were particularly interested in the $-\sqrt{4}$ value for the amino group because this group \sim unlike other groups

. -

831

¹ E. L. Eliel, Stereochemistry of Carbon Compounds, p. 236. MC-Graw Hill, New York (1962).

² E. L. Eliel, J. Chem. Educ. & 126 (1960).

³ M. Tichy, J. Jonás and J. Sicher, <u>Coll. Czech Chem. Comm. 24</u>, 3434 (1959).

⁴ A survey of literature data to be published elsewhere suggests that this value is better in the liauid phase than the commonly used value of 1.8 **kcal./mole.**

⁵ J. Sicher, J. Jonás and M. Tichy, Tetrahedron Letters 13, 825 (1963).

previously investigated 1,2,6 **- contains a single free pair in its outer shell of electrons. We have determined the conformational** equilibrium value for NH₂ by two different methods previously described, $\underline{viz.}$ a kinetic method $7, \overline{8}$ and a nuclear magnetic resonance method.^{9,10} **The kinetic method involved a spectroscopic study of the rate of re**action of appropriate cyclohexylamines with 2,4-dinitrochlorobenzene **to give 2,4-dinitrochloroanilines ¹¹ . Since the specific rate for** cyclohexylamine (k) was too close to that for **trans-4-t-butylcyclohexylamine (k,) to allow adequate calculation of the conformational** equilibrium. constant K from the equation 8 K = $(k_a-k)/(k-k_a)$, we calculated, instead, the corresponding equilibrium constant for cis-4-methylcyclohexylamine K^{*} \star (k_a-k^{*})/(k^{*}-k_e) where k^{*} is the rate constant for cis-4-methylcyclohexylamine and k_a that for cis-4-t- $\Delta G_{\rm NH_2}$ to $\Delta G_{\rm NH_2}$ + 1.7, $\Delta G_{\rm CH_2}$ + 1.7, $\Delta G_{\rm CH_2}$ **it being assumed that the free energies for shifting the amino and** the methyl groups in the conformational equilibrium of cis-4-methylcyclo**hexylamine are additive. ²**

The substituted cyclohexylamines were prepared by published m ethods 3 and were converted to their $N(2,4$ -dinitro)phenyl derivatives **by treatment with 2,4-dinitrochlorobenzene in ethanol. The resulting**

2,4_dinitroanilines had the following physical properties and compositions:

Kinetic data were obtained by the method of Bunnett and coworkers¹ **for the reaction of the amines with 2,4_dinitrochlorobenzene in 98% ethanol at two temperatures and are shown in Table 1.**

Table 1.

All data were obtazned in duplicate or tripilcate, sometimes at two different concentrations of amine. From the data at either 25.10°C or 56.60° C one may calculate $K^{\bullet} = 1.2$ whence $\Delta G^{\bullet} = -0.1$ kcal./mole and ΔG_{NH_2} = 1.7 $\sim \Delta G^*$ = 1.8 kcal./mole in 98% ethanol. This value **is in excellent agreement with that of Sicher and coworkers. 5**

¹² J. J. Blanksma and G. F. Wilmink, <u>Rec. trav. chim</u>. <u>66</u>, 445 (1947).

It is noteworthy that the axial amine, cis-4-t-butylcyclohexyl**amine, reacts over twice as fast as its equatorial (trans) epimer.** This is in contrast to the relative reactivity of axial and equa**torial groups in almost any other reaction involving an exocyclic function.31 group and may reflect an unusual stabilization of the equatorial (VS. the axial) amino grcup through salvation.**

Nuclear magnetic resonance studies 9,10 permitted an evaluation of $-\Delta G_{NH_0}$ as a function of solvent. Here, again, the signal of **2 the lone proton on the carbon bearing the amino group in cyclohexylamine was too close to that of the corresponding proton in trans.-4-ji-butylcyclohexylamine to allow evaluation of the conformational equilibrium constant by means of the equation** 10 **K = (** $6\frac{1}{2}$ \sim δ $(\delta - \delta)$; therefore K^{*} for <u>cis</u>-4-methylcyclohexylamine was computed **using the corresponding shift** δ^* **in that compound.** From K^{\bullet} , $-\Delta G_{NH_{\bullet}}$ was calculated as explained above. The NMR data and **2 - & values derived from them are shown in Table 2. Shifts are in C./S. downfield from tetramethylsilane at 60 mc./s.**

The following facts emerge regarding the conformational free preferense of the amino group: (1) In solvents which are not hydrogendonors, $\sim \Delta G_{\rm NH_{2}}$ **is 1.15-0.05 kcal./mole. Polarity or hydrogen acceptor properties of solvent seem to be unimportant. (2) In** hydrogen-donor solvents, - ΔG_{NH_2} is 1.45-0.07 kcal./mole. For reasons **unknown, this value is somewhat lower than the kinetic value and the value5 derived from pK measurements, but the discrepancy is not large.** (3) In protonic solvents, $-\Delta G_{NH_2}^+$ is 1.70^{\pm} 0.16 kcal./mole. The **3 value seems to be lowest in the least solvating medium, trifluoroacetic acid, the value for adequately solvated NH₂⁺ lying between 1.7 and 1.8 kcal./mole. (This value, also, may be somewhat too low.)**

Table 2

^a Independent of concentration from $2\frac{1}{2}\%$ to 25% .

b Spectrum recorded before precipitation occurred.

c The much larger shifts in these solvents confirm that the amino group is protonated.

The trend of the three values is unmistak&le and clearly shows that unbended NH 2 is smaller than hydrogen-bonded NH2 which, in turn, is smaller than solvated NH_2^+ . **3' The reasons for this in terms of the** preferred rotational conformations of the axial NH₂-group and the **space-demand of the free electron pair will be discussed fully elsewhere.**

This work was supported under National Science Foundation
Grant G-14251. Acknowledgment is made, also, to the donors of
The Petroleum Research Fund, administered by the American Chemical
Society, for partial support of thi